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Abstract

A simple mechanical model, which consists of a particular assemblage of elementary units composed of elastic
springs and frictional sliding blocks, appears suitable for describing the various aspects of the elastic±plastic
behavior of steel bars in standard tensile tests: oscillations in the average stress±strain curve, the distinction between

local and global responses, instability due to the transition from an upper to a lower yield point, the spread of
plastic deformation, strain-hardening behavior, elastic unloading and the in¯uence of loading-device sti�ness. 7 2000
Elsevier Science Ltd. All rights reserved.

1. Introduction

In the words of J. F. Bell (1973), from the beginning of the 19th Century up to today `nearly every
decade has seen commentary on the phenomenon of discontinuous plastic deformation'. This is the
phenomenon easily recognizable by measuring the corresponding axial load in any mild steel bar when it
is pulled by means of a testing-machine, at a prescribed relative displacement of the clamping jaws (i.e.,
imposed deformation test). Although a well-de®ned plastic plateau usually results, by looking more
closely at a typical mean-stress vs mean-strain diagram like that in Fig. 1a, it is evident that yielding is
actually a `pseudo-equilibrium' state, in which the mean stress exhibits irregular oscillations around a
nearly constant average value. Serrated deformations can also be observed in metals when they are
subjected to dead-weight loading: the strain progresses in sudden jumps rather than uniformly over time
even when the loading rate is kept constant and usually, the lower the loading rate is, the more
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Fig. 1. Typical s±e diagrams for an imposed-deformation tensile test. (a) averaged response; (b) local response.
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discontinuous the steps are. Moreover, the phenomenon is more pronounced in low than in high-purity
metals (Bell, 1973, Section 4.31).

Attempts at explaining such behavior follow essentially two kinds of reasoning. By one way of
thinking, the oscillations can be attributed to the in¯uence of the testing machine, whereas the other
approach views them as the re¯ection of an internal material instability, irrespective of the loading
device. Support for the latter theory comes from commentaries on the experimental investigations of
Duleau (1813), Savart (1837), Masson (1841), Rosenhain and Archbutt (1912), Portevin and Le
Chatelier (1923), Hanson and Wheeler (1931), while the former rationale was sustained ®rst by
Wertheim (1844), then by most scholars of the early 20th Century and more recently by Lempriere
(1962) who, in particular, tried to mathematically demonstrate the dynamic interaction between the
velocity of a specimen's plastic deformation and the inertia of the testing machine.

Nowadays, it is commonly accepted that such oscillations cannot be considered simply a secondary
e�ect induced by the loading device. However, it has, at the same time, become equally clear that testing
conditions, such as specimen temperature, speed of imposed deformation and, consequently, testing-
machine sti�ness, can greatly e�ect the apparent material response (Korber, 1926; Schulz and
Buchholtz, 1926; Elam, 1938; Welter and Gockowski, 1938; Davis, 1938; Manjoine, 1944). A decisive
contribution in this direction came from the experiments ®rst performed in 1937 by Siebel and
Schwaigerer (1937±1938) who in order to explore the in¯uence of testing-device sti�ness on the shape of
the s±e diagrams, inserted an elastic spring in series with the test bar. They found that the drop in the
stress±strain curve at yielding diminished progressively and ®nally vanished when the spring's sti�ness
was decreased. These results were later con®rmed by Miklowitz (1947), who found that even the stress
oscillations at yielding may disappear at room temperature, if the sti�ness of the spring is su�ciently low.

Recently, the authors (Froli and Royer-Carfagni, 1997, 1999) have underscored the need to introduce
a distinction between an `averaged' and a `local' material response. These can be obtained by
considering the averaged and the local strain, the former traditionally de®ned as the ratio between the
relative displacement of the bar's ends and its initial length, while the second was measured by short
resistance strain gauges placed at regular intervals longitudinally along the bar axes. Figs. 1a and 1b
illustrate two such typical responses in graphs correlating the average stress s with either the averaged
(Fig. 1a) or the local (Fig. 1b) strain. These results are relative to one of the tests reported in Froli and
Royer-Carfagni (1999) on cylindrical mild-steel bars, 16 mm in diameter, on which the local
measurements were performed through 6 mm-long, high-performance (10% allowable strain) gauges.
The graphs are interrupted at the beginning of strain hardening, before which necking-related
phenomena are signi®cant; hence, the true stress can be considered practically equal to s, i.e., the tensile
force per unit of the bar's undistorted cross-sectional area.

Although the local relations in Fig. 1b are similar to those obtained by measuring averaged quantities
as in Fig. 1a, some substantial di�erences are clearly present. The most evident is that in the local
response hardly any oscillations at yielding can be observed. A further distinction is in the transition
between the elastic and yielding periods. This transition is smooth, but curly in the average-value graph;
sharp and straight in the local diagram where, after reaching point A, the mean stress abruptly joins the
plastic plateau at point A ', with no tendency to chamfer (Fig. 1b). After C. von Bach (Nadai, 1950,
Section 19.1), point A is traditionally called the upper-yield point (Oberestreckgrenze ) and A ' the lower-
yield point (Unterestreckgrenze ). It should also be noted that the upper and lower-yield points tend to
coincide when the specimen is released and successively reloaded, regardless of whether the unloading be
in the middle of the local plastic plateau (point C in Fig. 1b), or in the strain-hardening branch (point
D, Fig. 1b).

Other peculiarities are evidenced in Fig. 2, which presents, as a function of time, the mean-stress and
local-strain histories measured by eight resistance strain gauges (Froli and Royer-Carfagni, 1997)
numbered according to their placement along the bar's axis. The ordered sequence of strain jumps
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recorded by the gauges provides evidence that localized plastic distortions do not nucleate randomly,
but slowly advance as a plastic wave in a precise order throughout the bar. This is usually referred to as
McReynolds' slow wave, in honor of the scientist, McReynolds (1949), who ®rst recognized the
progression of plastic deformation in dead-weight testing in the simultaneous recordings of four wire
gauges uniformly spaced along the specimen's axis (see also Dillon, 1966; Sharpe, 1966; Bell, 1968,
Section 1.31; Schmidt, 1995).

The present paper represents an attempt to interpret the complex phenomena occurring in the tensile
response of steel bars through a simple mechanical model which, in our opinion, could be the starting
point for derivation of a more complete, 3D, continuum mechanics model. A similar issue was
previously addressed by a number of authors, among whom MuÈ ller and Villaggio (1977) who, building
upon Ericksen's (1975) pioneering work, conceived of a plastic body as composed of hypothetical arrays
of snap-springs. Such constructs were heuristic devices analogous to the well-known dash-pots
simulating internal friction in a viscous body: just as a dash-pot represents the e�ect of momentum
transfer between a group of molecules, snap-springs are indicative of the e�ect of loading on dislocation
movements. It is also similar in kind to the well-known dynamic system of Carlson and Langer (1989),
consisting of an elastically coupled chain of masses mechanically conceived of as rigid blocks. The chain
is in contact with a moving rough surface and driven persistently toward slipping instability, which is
obtained by introducing a non-linear, velocity-dependent friction law at the interface between the blocks
and moving surface. A more re®ned model has recently been proposed by Burns (1994) and shown to be
able to explain the onset of discontinuous plastic ¯ow in metals at cryogenic temperatures. This
phenomenon consists of sudden load drops associated with local elongation following a sudden local
increase in temperature. In a heat bath at a temperature of a few Kelvin degrees, thermodynamic

Fig. 2. Mean-stress and local-strain histories for a tensile test.
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balance may play a decisive role: once one assumes that plastic ¯ow is associated to heat production,
the yielding of one particle produces a drastic localized temperature change with respect to the
surrounding atmosphere, which can also radically a�ect the material's local behavior. However, it is our
expectation that at room temperature such e�ects are not decisive, whereas other phenomena, such as
the possibility that the yielding of one particle in¯uences the others closest to it, do become critical.

In our interpretation, a metallic bar can be conceived of as an assemblage of elementary constituent
units consisting of the combination of linear springs and friction-sliding blocks, these latter activated by
the eventual breakage of a retaining tooth. It will be shown that the response of the single unit can
reproduce the local material behavior plotted in Fig. 1b. Afterwards, in order to reproduce the non-local
interaction between material particles at yielding, a particular assemblage of three arrays of these
elementary constituents will be introduced. This arrangement is shown to be able to completely describe
and interpret the global response in Fig. 1a, as well as the local-strain histories depicted in Figs. 1b and
2. In addition, by inserting springs of di�erent sti�ness in series with the whole assemblage, the possible
in¯uence of the loading device will be discussed.

2. The model

The plastic-bar unit element considered here is that represented in Fig. 3. It is an assemblage of a

Fig. 3. The constituent element and local F±D relations.
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linear spring of sti�ness Ke in series with a module consisting of a rigid cylinder C connected in parallel
to another linear elastic spring of sti�ness Ki and a friction-sliding piston P. We suppose that friction
sliding occurs only when the drag force equals the value FL, though block P is initially con®ned to its
resting position by a retaining tooth T, which breaks when subjected to a force FU> FL.

By assuming that one end of the unit element is ®xed, while the other is subjected to a given
displacement D (Fig. 3), we can calculate the force F o�ered by the restraints as the displacement D is
increased. At the outset, the retaining tooth T exerts a much sti�er constraint than frictional contact,
which requires relative motion between P and C in order to develop its full bearing capacity FL . Thus,
as long as

D < D1 � FU

Ke

, �1�

the piston P is blocked, and the external spring alone carries the load. Consequently, the F±D graph
presents a ®rst linear branch with slope Ke (Fig. 3b). When D increases and the retaining tooth breaks, P
then slides a certain amount and releases spring Ke until it exerts a force equal to FL, the greatest
allowed by friction. The result is that point A 0 (D1, FU) in Fig. 3b suddenly drops to point A ' at
coordinates (D1, FL). Subsequent relative displacement produces further sliding of piston P at constant
force F � FL: This phase, corresponding to the plateau in Fig. 3b, lasts until the initial gap d has been
completely closed, that is, up to the value

D � D2 � FL

Ke
� d: �2�

At this point, the internal spring Ki comes in contact with the piston P, and from here on the
displacement D satis®es a linear relation of the form

D � D�F � � F

Ke

� d� Fÿ FL

Ki

: �3�

This corresponds to the `strain hardening' linear branch of Fig. 3b, which consequently presents slope

K SH � dF

dD
� KeKi

Ke � Ki

: �4�

Fig. 3b illustrates what happens if unloading is performed at, say, point C, in the middle of the plateau.
If the force F decreases, the piston P cannot slide any further. Consequently, unloading results in the
release of spring Ke, and the stress±strain diagram follows a path parallel to the initial linear branch
OA. Subsequent reloading returns along the same path, but no drop in stress, like the one between
points A and A ', occurs because the retaining tooth T has already been broken. The same holds if
unloading is performed at, say, point D in the `strain-hardening' branch, because in this case as well, the
piston P does not slide when the load is released, and the main contribution once again comes from the
sti�ness Ke. This time, however, the internal spring Ki remains compressed by the force F � FD ÿ FL (FD

is the axial force at point D in Fig. 3b), compensated by the frictional contact between cylinder C and
piston P as an internal self-equilibrating action (of course, this is true until j FD ÿ FL j< FL�: This is in
agreement with the thermo-mechanical considerations of G. I. Taylor, W. S. Farren and H. Quinney
(Nadai, 1950, p. 55), who state that elastic energy remains stored in plastically bent lamellae in distorted
crystal grains of strain-hardened metals.

The unit de®ned in the foregoing is representative of local behavior and can be interpreted at the
microstructural level in terms of the theory of dislocation and plastic ¯ow in crystals (Cottrell, 1961,
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Section 13). According to the classical explanation for the sharp yielding point in ferrous alloys
(Cottrell, 1961), solute atoms, which are able to migrate through the crystal under the action of thermal
¯uctuations, will, in the presence of a dishomogeneous ®eld such as the stress ®eld of a dislocation, drift
towards those places where their energy state is lowest. Thus, the starting scenario of an unyielded
portion of an alloy is the segregation of solute atoms around stationary dislocations. Since the
migration of solute atoms takes much longer than the movement of a dislocation, in the presence of an
external stress ®eld, dislocations will initially remain anchored to the surrounding atmosphere produced
by the solute atoms. If a long enough time is allowed during the tests for the migration of solute atoms
to occur, creep e�ects may become important. However, if the loading speed is high enough to allow
discounting such an e�ect, the material could exist in either of two conditions: in the ®rst, the unyielded
or strain-aged condition, the dislocations are anchored and deformation is purely elastic; in the second,
the overstrained condition, dislocations are free to move under applied stress and thus produce plastic
deformations.

In the model described in Fig. 3, the breakage of the retaining tooth marks the transition from the
unyielded to the overstrained condition. In line with the classical theory of Peierls and Nabarro
(Cottrell, 1961, Sections 6.1±6.2), we have further supposed that once the anchoring link has been
broken, the dislocation can migrate at a critical force, FL. This critical force accompanying any possible
dislocation movement is modeled in Fig. 3 by the frictional constraint between the cylinder and piston,
which can slide one over the other precisely at the force FL. At the microstructural level, it can also be
demonstrated that any unloading reduces the drag force on dislocations (Cottrell, 1961, Section 3.3),
just like the relative force between piston and cylinder diminishes when the unit is released, regardless of
whether the unloading is in the plastic plateau or at the beginning of strain hardening. Since the
dislocations remain stuck at their positions, recovery is due entirely to the elasticity of the crystal and
consequently occurs along linear paths (Fig. 2b). Similarly, in the model no relative motion is possible
between the cylinder and piston, and unloading remains governed by the elasticity of the external spring
Ke. It also seems worth noting that the model suggests a new explanation for work hardening.

The next step, fundamental to interpreting the phenomena occurring in tensile bars, is to admit some
interaction between the elementary units. Following the indications of some experimental studies
(Wertheim, 1844, Sections 19.1±19.2), in particular those of Davis (1938), we surmised that any localized
yielding produces a condition equivalent to stress concentration, which can greatly in¯uence the nearest
elementary portions. Such behavior can be modeled most simply by considering the bar to be composed
of three arrays of elementary units made up of (Fig. 4) two element classes arranged as in Fig. 3. The
short ones, with length l, are distinguished by parameters d, Ki, Ke, FU, FL, and the long ones, of length
2 l, by representative parameters 2d, Ki/2, Ke/2, FU, FL. The three arrays, one formed by (2n+ 1) short
elements and the other two by one short plus n long elements, are connected to each other, as

Fig. 4. Schematic representation of the constituent element arrays in the model bar.

M. Froli, G. Royer-Carfagni / International Journal of Solids and Structures 37 (2000) 3901±3918 3907



represented schematically in Fig. 4. For the sake of illustration, the three arrays have been represented
in the ®gure as one beside the other, though they must be understood as ideally lying in a single line,
with no eccentricity, and each transverse connection among four distinct elements must be considered a
single node, thus imposing an identical longitudinal displacement on the connected points.

Of course, many other unit arrangements are possible. However, the one in Fig. 4 is likely to be the
simplest satisfying an indispensable feature: whenever one element (say, element i in Fig. 4) experiences
traction FU, its retaining tooth breaks, nucleating a distortion which a�ects the neighboring elements (i
ÿ 1) and (i+1). These will consequently be overloaded, developing a chain-reaction which results in the
spread of frictional sliding throughout the elementary-unit assemblage, just as in the case of
McReynolds' plastic slow wave.

3. Qualitative response of the model

We ®rst consider the case in which the model bar is composed of 2n long and 2n + 3 short
elementary units, each equal to others of the same kind, arranged as in Fig. 4. In order to better
correlate the model to a real case, we consider a metal rod of length L, cross-section A, initial Young's
modulus E and strain-hardening modulus E SH. Then, with the same notation as in Figs. 3 and 4, we set

l � L

2n� 1
, Ke � EA=3

l
, K SH � E SHA=3

l
,

Ki � EE SH

Eÿ E SH

A=3

l
, Fu � su

y

A

3
, FL�sl

y

A

3
, �5�

where s u
y and s l

y represent the upper and lower yield stress of the local response in Fig. 1b. Neglecting
the units' own weights, we prescribe that the extremities of the model bar are displaced apart by a
quantity L=L(t ) and, like a standard imposed-deformation tensile test in a hard device, we ®x the
relative displacement velocity dL=dt of the clamped ends.

If P is the total reaction o�ered by the test-machine constraints, the generic ith element will be drawn
by Fi=P/3 until

L
2n� 1

< D1 � FU

Ke

, �6�

that is, up to Fi < FU. By increasing the relative displacement of the extremities, there exists the
possibility that the retaining teeth of all the units break at the same instant, producing a simultaneous
sliding of the pistons. However, in order to account for dishomogeneities, we suppose that the resistance
of the various retaining teeth di�er from one another by an in®nitesimal quantity e. Thus, one tooth
breaks ®rst and will produce local release and the nucleation of `plastic' deformation.

In order to simulate experimental results, we refer to the test reported in Fig. 1, where the specimen
presented approximately L= 50 cm and A= 2.01 cm2. From the graph in Fig. 1b, we can obtain E=
2.0� 105 MPa, E SH=3.33� 103 MPa, s u

y=390 MPa, s l
y=358 MPa (Froli and Royer-Carfagni, 1999).

An assemblage of 50 long and 53 short elementary units, in which the short units have approximately
the same length as the strain gauges used in Froli and Royer-Carfagni (1999), has been calibrated by
applying Eq. (5) and assuming the above values. In order to reproduce the fact that one tooth breaks
®rst, we have considered one element (the 52nd, according to the numbering in Fig. 4) to have an upper
yield point �su

y � 389 MPa that is slightly lower than the others (390 MPa). The response of the
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composite system when its extremities (as in the experiment) are displaced apart at a velocity of dL=dt �
2 mm/min was analyzed using an Ansys ®nite element code utilizing mono-dimensional elements with
constitutive laws as in Fig. 3b, assembled according to the scheme in Fig. 4.

Fig. 5 shows the mean reaction-stress P/A of the clamped edge as a function of the average strain

Fig. 5. Average stress±strain diagrams for uniform chain-bar model.

Fig. 6. Local strain for various elements and global average stress as functions of time.
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L/L. Marked oscillations, due to the aforementioned chain-reaction mechanism, are clearly recognizable.
Plastic deformation was veri®ed to actually nucleate at the weakest element and then progress
symmetrically.

In order to correlate the model with the output of strain gauges in Fig. 2, we de®ne the local
strain ei as the relative displacement of the extremities of any given ith element divided by its initial
length.

Fig. 6 presents, as a function of the time, the ei corresponding to several elements spaced
approximately at the same distance as the gauges applied to the real bar. In the ®rst phase, when all
elements remain elastic, the diagrams overlap on the ®rst branch OA, which is linear because we have
imposed a constant deformation velocity. Plastic deformation nucleated at the weakest unit (n. 52) when
P/A3389 MPa and a�ected the nearest six neighboring elements until sliding of the pistons produced a
su�cient release of the entire model bar. This release is evidenced by the ®rst drop in the average-stress
history, also reported in Fig. 6. Further displacement of the extremities produces additional sliding of
the pistons at constant stress until contact with the springs Ki is made, giving rise to a new increase in
stress. Inelastic deformation then progresses symmetrically towards both ends. We observe that the peak
average stress in the ®rst serration is greater than in the others, despite the fact that plasticity nucleates
at a portion containing the weakest element. This is because breakage of a retaining tooth in one
constituent produces much greater damage than that arti®cially introduced by reducing the resistance of
the tooth in element n. 52. It should also be noted that, while element n. 52 undergoes a jump in strain,
the diagrams relative to the other elements become practically horizontal at point A. More precisely,
Fig. 6, which shows a magni®cation of the pseudo-horizontal branches, reveals small oscillations that
match the average-stress history exactly.

The similarity between Figs. 2 and 6 is immediately evident, the main di�erence being that, in the ®rst
case, all the gauge graphs become pseudo-horizontal at point A; a response like that of element 52 is
lacking. This is because in a real bar it is impossible to predict where yielding nucleates and to place a
strain gauge exactly at that point. However, if this were possible, we would obtain the same trend as in
Fig. 6.

Fig. 7. Local stress±strain diagram for element n. 80.
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Fig. 7 shows the local stress±strain curve for one signi®cant element (n. 80). In this graph, branch A-
A0-C corresponds to the sudden strain increase in Fig. 6, which is thus revealed as occurring essentially
along the plateau. The oscillations, evidenced by the magni®cations in Fig. 6, can be found in Fig. 7
along two distinct paths: along A-A ', before the retaining tooth breaks, and along path C-C ', after the
jump in deformation. In particular, branch C-C ' corresponds to the situation in which the piston is in
contact with the internal spring Ki (Fig. 3), but stuck in this position due to frictional contact with the
cylinder. Therefore, at this stage the observed oscillations are due entirely to the elasticity of the external
spring Ke. It should also be noted that strain hardening develops, and the representative point rises
beyond point C in Fig. 7 only at time t > 600 (Fig. 6), that is, only after the retaining teeth of all the
elements have broken. At this stage, once again all the graphs overlap on a single branch.

Indeed, the local response obtained in tests (Froli and Royer-Carfagni, 1999) was found to di�er
considerably from one gauge point to the next. In particular, the values E SH, s u

y and s l
y were found to

vary one from the other by the order of 10%, whereas even greater discrepancies occurred in plastic
elongation (up to 25%). This e�ect can be simulated by letting the material properties of the constituent
elements vary randomly throughout the bar.

By considering random chains, we obtain the average stress±strain diagram shown in Fig. 8, which
resembles Fig. 1a much more closely than Fig. 5.

The corresponding local-strain histories, represented in Fig. 9, are not as uniform as in Fig. 6, though
the progression of a slow wave is once again clearly recognizable. This is because failure of any one of
the retaining teeth produces overloading of the neighboring elements, which masks all the originally
assumed di�erences. The result is the advancement of an inelastic wave, which in this case, however,
produces irregular oscillations because it successively encounters elements whose properties di�er one to
the next. The strain-hardening phase progresses again only when all the retaining teeth have broken, as
revealed in Fig. 9 by the increasing branches of equal slope starting at t 1 600. However, this time the
curves do not overlap, as in Fig. 6, because of the di�erences in the local plastic plateaux assumed for
the various elements.

Fig. 8. Average stress±strain diagrams for random chain-bar model.
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Another peculiarity of the random-chain model is represented by the spread of the slow wave.
Whereas in the uniform-chain model the slow wave advanced symmetrically on both sides, here plastic

deformation progresses in a seesaw manner. In fact, due to the heterogeneity, the slow wave advances

wherever it encounters lowest resistance. This is con®rmed by the number of oscillations in Fig. 8,

Fig. 9. Local strain for various elements and global average stress as functions of time; random chain.

Fig. 10. Local stress±strain for element n. 80 (random-chain model).
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which is practically twice that of Fig. 5, where each fall in stress corresponded exactly to the
simultaneous yielding of two portions distributed symmetrically about the point where the ®rst tooth
broke.

A ®nal characteristic feature concerns the local stress±strain diagrams, which are now of the type
reported in Fig. 10. As compared to the graph in Fig. 7, the main di�erence resides in the elastic
oscillations on the strain-hardening branch, which now occur following several (C-C ', D-D ', E-E '),
rather than a unique (C-C ' in Fig. 7) loading-unloading path. This re¯ects the fact that, since the stress
oscillations are not as regular as in Fig. 6, the generic element can now be unloaded at various stages of
its strain-hardening phase. The analogy to Fig. 1b is immediate.

4. The in¯uence of the loading device

The elastic energy stored in every testing machine renders any hard-device test an unattainable
idealization. As mentioned in the Introduction, the in¯uence of the loading device was ®rst studied
experimentally by Siebel and Schwaigerer (1937±1938) by inserting an elastic spring in series with the
test specimen and varying its sti�ness. They showed that the slope at which the stress falls from the
upper yield point to a point on the plastic plateau of the stress±strain curve could be reduced by
decreasing the constant DP=Dx of the elastic spring. In other words, the steepest slopes are obtained in
machines which respond to load increases with the least relative movement between the two heads
(hard-testing machine). As our previous results regard idealized situations, we feel it is important to
render our analysis exhaustive by accounting for this e�ect as well.

In order to reproduce Siebel and Schwaigerer's experiment, we placed a linear elastic spring in series
with the same uniform-chain-model bar discussed in Section 3a. Fig. 11 shows the local stress±strain

Fig. 11. Local stress±strain graphs for element number 80 (uniform-chain model for various elastic±constant values of the spring in

series with the bar).
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diagram for element n. 80, already considered above. The four descending branches correspond to
di�erent values of the spring's elastic constant: whereas K0=1 coincides with the case of Fig. 7, we
now consider the three values K1=100 kN/mm, K2=10 kN/mm and K3=1 kN/mm. In particular,
K1=100 kN/mm is the measured sti�ness of the machine used for our tests.

Siebel and Schwaigerer's conclusions can be readily interpreted within the framework of our model.
When one retaining tooth fails, it is assumed that the piston P (Fig. 3a) slides instantaneously,
producing a localized elongation and consequently releasing the elastic energy stored in all the bar
elements. The piston must slide enough to produce a drop in load to a value of the order of Fl,
which is compatible with the frictional constraint between the piston and cylinder. If an elastic spring is
inserted in series with the bar, the softer the spring is, the greater this amount must be. The descending
branches in Fig. 11 are fully covered by the piston stroke at the instant the retaining tooth breaks. In
particular, when the softest spring of sti�ness K3 is inserted, the initial gap d (Fig. 3) is completely
closed after the retaining tooth breaks, and the representative point jumps directly onto the strain-

Fig. 12. Global stress±strain graphs of the uniform-chain model for various elastic±constant values of the spring in series with

the bar.

M. Froli, G. Royer-Carfagni / International Journal of Solids and Structures 37 (2000) 3901±39183914



hardening branch. This means that piston P comes into direct contact with the spring internal to the
unit in Fig. 3.

Fig. 12 represents the global stress±strain diagrams obtained with the uniform-chain model for
the four values K0, K1, K2 and K3. It is interesting to observe that the gradual decrease in testing
machine sti�ness translates into a smoothing out of the oscillations at the plastic plateau, thus
con®rming the experimental results of Miklowitz (1947) previously cited in the Introduction. In
addition, the total number of oscillations may also be lowered, if the sti�ness of the loading device
is reduced su�ciently. In particular, whereas the wavelength of the oscillations remain essentially
constant, some of the oscillations following the sharp yield point when the sti�ness of the loading
device is K0 or K1, tend to disappear when such sti�ness is reduced to K3. This is because the softer the
loading device, the greater the amount of the elastic energy that must be released when the ®rst tooth
breaks. By comparing the diagram in Fig. 6 to that of Fig. 13, which presents the stress and local-strain
histories with an in-series spring sti�ness of K3, we notice that here the elements involved during the ®rst
load drop are those from n. 52 to n. 64; i.e., this is what is required in order to render the bar axial
force compatible with the loading capacity of the elementary units once their retaining tooth has
broken.

Fig. 14 compares the average stress±strain curves obtained from the random-chain model already
examined in Section 3 when the four loading-device sti�ness values K0, K1, K2 and K3 are considered.
The main di�erence we notice from Fig. 12 is that this time, not only the number, but also the
wavelength of the oscillations may be a�ected. This is explained in Fig. 15, which shows the strain
histories for the softer case, K3=1 kN/mm. Due to the heterogeneity of the material properties
throughout the bar, the number of units whose retaining teeth break simultaneously can vary
considerably; this depends on the uneven distribution of weak points that the plastic wave encounters
while travelling through the bar.

Fig. 13. Local strains and global average stress as functions of time for various elements in a uniform-chain model when the load-

ing device has sti�ness K3=1 kN/mm.
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In fact, it is noteworthy that the manner in which plastic deformations develop and advance
through the formation of a plastic wave remains qualitatively the same, regardless of the sti�ness
of the inserted spring. This is another aspect that con®rms our belief that the oscillations in the
average diagram should not be attributed to the in¯uence of the loading device.

As a ®nal remark, the foregoing analysis also provides an objective criterion for judging
whether the machine used for the experimental trials is to be considered hard or soft. As we are
now in a position to compare, by means of Figs. 11, 12 and 14, the unattainable ideal situation
(K0=1) with that corresponding to the real, measured, sti�ness (K1=100 kN/mm), we evidence
that the machine used for our tests can, with good approximation, be considered hard. The extent
to which such an approximation can be deemed reliable is revealed by close scrutiny of the
diagrams.

Fig. 14. Global stress±strain graphs of the random-chain model for various elastic±constant values of the spring in series with

the bar.
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